

Wet Screening: "Making Water Work for You"

MAB Equipment- Mark Blanchflower President/Owner

> Polydeck- Bob Kurz Territory Manager

Wet Screening

REQUIPMENT COMPANY, INC.

Types of Wet Screens

- Wash Screens
- Rinse Screens
- Dredge Screens
- Dewatering Screens

Wash Screens

- Final Sizing of Material
- Using Water to Clean and Size
- Break up clay and eliminate fines
- Consistent Bed Depths (Feed Gradation)

Rinse Screens

- Not Sizing Material Sized Prior to Screen
- Remove clay and fines
- Fluctuating Feed Varying Deck Loading
- Inconsistent Bed Depths (Product to Product)
- High bed Depths
- High Amount of Near-Sized Material

Dredge Screens

- Separating Sand Rock
- High volumes of water
- High Velocity down the Deck
- Velocity Boxes over Screen
- Curtains, Dams, and Flaps used to decrease velocity
- Low bed depths
- Bottom Deck Critical

General Wet Screening Equipment Considerations (wash, rinse, dredge)

Horizontal Screens

- > Pros
 - ✓ Triple shaft
 - Oval motion stroke
 - High G screening
 - Adjustable stroke length, timing angle, RPM
 - ✓ Consistent Travel Speed
 - Improved efficiency
 - ✓ Horizontal decks
 - Material trajectory
- > Cons
 - ✓ Slower travel speed
 - ✓ Less access room (repairs)
 - ✓ Potential to spill over sides

Inclined Screens

- Pros
 - ✓ Higher travel speed (feed)
 - Thinner bed depth
 - Higher feed capacity
 - Less "surging"/spillover
 - Fines stratify faster
 - ✓ "Tumbling" action
 - ✓ More clearance/access
- Cons
 - ✓ Material accelerates down the deck (less efficiency)

Dewatering Screens

- Sand (3/16" minus)
- Lower Moisture Content
- High Bed Depth
- Stackable Material

Advantages to Wet Sizing

Affect of Water on Capacity

Size of Opening	Factor E
1/32"	1.25
1/16"	1.75
1/8"	2.00
3/16"	2.00
5/16"	1.75
3/8"	1.50
1/2"	1.30
3/4"	1.20
1″	1.10

1" = 10% Increase 3/16" = 100% Increase Finer cuts benefit more from water

Volume of Water Required

Rule of Thumb: 3-5 GPM per STPH (feed to screen)

		GPM PER TON	SPACING OF SP			
MATERIAL	APPLICATION	OF FEED	TOP DECK	BOTTOM DECK	221	
Stone	Washing	2-4	10-12	7-10	30	
Stone	Rinsing	11⁄2-2	10-12	7-10	40	
Stone	Rinsing & Rewashing	2-3	10-12	7-10	40	
Stone	Sizing	3-5	10-12	7-10	30	
Stone & Clay	Washing	5-10	10-12	7-10	40	
Sand & Gravel	Washing	3-5	10-12	7-10	30	
Sand & Gravel	Sizing	3-5	10-12	7-10	30	
Sand & Gravel	Rinsing & Rewashing	2-3	10-12	7-10	40	
Sand & Gravel	Media Recovery	21/2-31/2	10-12	7-10	30	
Iron Ore	Sizing	5-10	10-12	7-10	40	
Iron Ore	Media Recovery	21/2-31/2	10-12	7-10	30	
Coal	Sizing	3-6	10-12	7-10	30	
Coal	Media Recovery	11⁄2-3	10-12	7-10	30	
Coal	Prewet	1-3	10-12	7-10	30	

Spray Water Requirement for Wet Screening

Volume of Water Required

500 TPH X 5 GPM = 2,500 GPM To Screen

Where to Apply The Water

1/3 of Water into the Headbox2/3 of Water into the Spray Bars

Where to Apply The Water

500 TPH X 5 GPM = 2,500 GPM Total To Screen

2,500 GPM X 1/3 = 833 GPM To Head Box 2,500 GPM X 2/3 = 1667 GPM To Spray Bars

Head Box Water

- Separate Fines from Rock (Slurry)
- Fines/Sand into Slurry Before Screen
- Pre-wet Material
- Soften Clay and Silts
- Increases Efficiency of Screen (up to 50%)
- Increases Capacity of Screen (up to 100%)
- Higher Fines Content = Biggest Gains in Efficiency/Capacity

Head Box Water

- Separates Fines from Rock (Slurry)
- Slurry/Sand Reports to Bottom Deck Quicker
- Better Bottom Deck utilization

Head Box Water Set-up (a)

- Single Spray Bar Head Box
- Minimal Fines in Feed
- 10% or Less Fines in Feed
- Larger Particle Size (+ 1")
- Lower Tonnages (-300 STPH)
- Not Effective at Producing Slurry

Head Box Water Set-up (b)

- Double Spray Bar Head Box
- Larger Percentage of Fines in Feed
- More Than 10% Fines in Feed
- Smaller Particle Size (- 1")
- Higher Tonnages (+300 STPH)
- Effectively Separates Sand from Rock
- Creates the Best Slurry

Head Box Water Set-up

Keep the Water on the Material (Waste)

Poor Water Set-up can be worse than No Water

Pressure Needed to Penetrate Bed Depth

Head Box Water

Head Box Water Problem Indicators

GOOD Head Box Water

- No Fines Visible on Top Deck
- Slurry/Fines to Feed End of Bottom Deck

POOR Head Box Water

- Dry Fines on Top Deck
- Lumps of Fines on Top Deck
- Clean Water Reporting to Screen
- Dry Fines/Blinding on Bottom Deck

Spray Bars

- Used to Remove Fines from Material (Consistent Gradation)
- Helps Separate Sand/Fines from Rock
- Break up Lumps and Clay Balls
- Reduces Travel Rate of Material (Water Dams)

Spray Bar System - Components

- Water Manifold Divides Flow
- Shut Off Valve
- Water Hose
- Spray Bar
- Nozzles
- Blow Out/Cleaner Valve

Spray Bar Location

- Gradation Dependent (Percent Fines)
- Bed Depth (4:1)
- Critical Decks

Critical Decks – Top Deck

- Focus Water/Pressure to Top Deck
- Adjust Valves
- Add Spray Bars/Nozzles/Orifices
- Larger Particle Size

Critical Decks – Middle Deck

- Focus Water/Pressure to Middle Deck
- Adjust Valves
- Add Spray Bars/Nozzles/Orifice
- Difficult to Maintain

Critical Decks – Bottom Deck

- Commonly are the Critical Decks
- Highest Percentage of #4 Minus
- Smallest Particle Size
- Deepest relative Bed Depth (4:1)
- Mech Tube (Limited Spray Bars)
- Clays/Clay Balls
- Spray Bars Splitter

Spray Bar System - Nozzles

Spray Nozzle Orientation

- 45 Degree Angle
- Towards Feed End
- Create Water Dam

Water Dams + Surface Dams

- Greater Retention Time of Material Under Water
- Increased Screen Efficiency
- Decks with Higher Fines Content
- Better Exposure of Fines/Near-Size to Water

Spray Nozzles Spacing Gaps

Spray Nozzles Spacing Gaps

Gaps in Spray Allows Material to Bypass Water

Spray Nozzles – Spacing

Spray Should Overlap 25% on Each Side

Plugged Spray Nozzles Gaps

- #2 Most Common Issue with Wet Screens (#1 Low Pressure)
- Select Nozzles that are Easier to Clean
- Cleaning/Blow-Out Valves
- Inspecting/Cleaning Schedule
- Pump Strainers

Water Pressure - Why

- Need Adequate Pressure to Penetrate Bed Depth (4:1)
- Higher Pressure Removes Fines More Efficiently
- Silts and Clays Adhere to Material Stronger
- Break up Lumps and Clay Balls
- Create "Water Dams"

Water Pressure - Where

- 40 PSI at the Spray bars
- Must be Measured at the Screen
- Be aware of Pressure Losses in Water System

Pump

Water Pressure - Consistent

- 40 PSI of Consistent Pressure
- Be Aware of Intermittent Pressure Drops
- Clean-up Hoses

Pressure-Capacity

	CAPACITY IN GPM											
Pressure PSI	DIAMETER OF ORIFICE											
	5/32*	3/16	7/32	1/4*	⁹ /32°	5/16	11/32*	3/ ₈ "	13/32*	7/16*	15/32	1/2"
20	2.1	3.0	4.0	5.2	6.6	8.1	9.8	11.7	13.7	15.8	18.2	20.1
30	2.5	3.6	4.8	6.4	8.1	10.0	12.0	14.4	16.8	19.5	22.4	25.4
40	2.9	4.1	5.7	7.4	9.3	11.5	13.9	16.5	19.4	22.4	25.8	29.4
50	3.2	4.6	6.3	8.2	10.4	12.8	15.5	18.5	21.6	25.0	28.8	32.9
60	3.5	5.1	6.9	9.0	11.8	14.0	17.0	20.2	23.8	27.5	31.6	36.0
70	3.8	5.6	7.5	9.7	12.3	15.1	18.3	21.8	25.6	29.6	34.0	38.8
80	4.1	5.9	8.0	10.3	13.1	16.2	19.5	23.3	27.3	31.6	36.3	41.4
90	4.3	6.2	8.5	11.0	14.0	17.2	20.8	24.8	29.0	33.6	38.7	44.0
100	4.6	6.6	8.9	11.6	14.7	18.1	21.9	26.1	30.6	35.4	40.7	46.4

Factors Effecting Wet Screening

- Bed Depth
- Particle Size Near Sized Material
- Clays and Silts Deleterious Material Content

Bed Depth

- 4:1 Ratio of Bed Depth to Aperture Size (Discharge End)
- 1" Opening = 4" Bed Depth
- 3/16" Opening = 3/4" Bed Depth
- Deeper Bed Depths Require more Water and Pressure
- Harder for the Water to Penetrate
- Screening Standard: 25% Oversize and 40% Half Size

Particle Size – Near Size

Particle Size

- The closer the particle size to the aperture, the harder to pass it.
- "Half Size" and smaller go fairly easily.
 - $\frac{1}{4}$ " particle, $\frac{1}{2}$ " aperture, e.g.
- "Near Size" takes a lot more time.

Probability of Passage

	Ratio of Particle Size to Aperture Size	Chance of Unrestricted Passage per 1000	Number of Apertures Required in Path
	0.001	998	1
	0.01	980	2
	0.1	810	2
	0.2	640	2
	0.3	490	2
	0.4	360	3
	0.5	250	4
	0.6	140	7
	0.7	82	12
$\overline{}$	0.8	40	25
	0.9	9.8	100
	0.95	2	500
	0.99	0.1	10000
	0.999	0.001	1000000

*Reproduced from 'Mineral Processing Technology', B.A Wills, 4th Edition

3/8" / 1/2" = 0.75

7/16" / 1/2" = 0.875

MAB EQUIPMENT COMPANY, INC.

Particle Size

- **Smaller Material has Greater Surface Area**
- Larger Material has bigger Voids
- **Bottom Decks Are Most Challenging**

10X

Clays and Silts

- Clays and Silts Adhere to Material Stronger than Rock Dust
- Inherent Moisture
- Clump and Stick Together
- Clay Balls Must be Broken up

Decanting Water

- Removing Excess Water From Material
- Discharge End of Decks
- Surface Dams
- Panel Selection

Decanting Water – Panel Selection

- VR "Zig-Zag" Panels Decant Water Better
- Anti-Plugging
- Slotted Apertures
- Discharge End of Decks

Wet Screen Summary

- 5 GPM Water per STPH Feed to the Screen
- 40 PSI Water Pressure at the Screen
- 1/3 of Water Going to the Head Box
- Spray Nozzles at 45 Degree Angle Towards Feed End
- Water Dams Increase Washing/Rinsing Efficiency
- Know Your Gradation/Critical Decks

Thank You for Your Time!

