Aggregate Characteristics and Handling For Asphalt Mixes

Aggregates 102 Seminar IAAP 50th Annual Convention March 4, 2020

William J. Pine, P.E.

Heritage Construction & Materials

IDOT Asphalt Mix PFP and QCP Pay Factors

- Statistical Based Specs
 - VMA = 30%
 - Air Voids = 30%
 - Density = 40%
- Aggregate (as % mix)
 - $\sim 95\%$ by **WEIGHT**
 - $\sim 80\%$ by **VOLUME**

Consistency

What is VMA? Voids in the Mineral Aggregate

- Voids in the <u>total</u> aggregate structure
- Function of aggregate
- Air Voids are function of:
 - Aggregate
 - Effective AC Volume

$$VMA = 100 - \left\{ \frac{\left(G_{mb} * P_s\right)}{G_{sb}} \right\}$$

What is VMA? Voids in the Mineral Aggregate

- Voids in the <u>total</u> aggregate structure
- Function of aggregate
- Air Voids are function of:
 - Aggregate
 - Effective AC Volume

$$VMA = 100 - \left\{ \frac{\left(G_{mb} * P_s\right)}{G_{sb}} \right\}$$

Why Is VMA Important?

- Essential Asphalt Mix Properties:
 - Stability
 - Durability
- VMA promotes
 durability it is the
 room between the
 aggregate particles for
 AC and Voids

VMA Drives Air Voids

Variability of VMA and Voids

- Std Dev of VMA = 0.4
- Std Dev of Voids = 0.5
- $(0.4/0.5) \times 100 = 80\%$

 Virtually ALL variability in VMA and MOST variability in Voids is variability in the aggregate structure

Aggregate Packing CharacteristicsDrive VMA

Gradation

 Continuously-Graded, Gap-Graded, etc.

Shape

Flat & Elongated, Cubical,
 Round

Strength

Weak vs. Strong, Influence of Particle <u>Shape</u>

• Texture (micro-texture)

- Smooth, Rough

Gradation

- *Primary* factor that controls aggregate packing (VMA)
- Combined blend gradation influences mix sensitivity to gradation fluctuations

Gradation

- Mix size impacts product role
 - FA-22 in 9.5mmmix (CA)?
 - FA-22 in 19.0mmmix (FA)
- Product amount in a mix impacts its influence

Gradation – Primary Control Sieve

The break between Coarse and Fine in a combined blend.

Mixture NMAS	Primary Control Sieve
37.5 mm (1-1/2")	9.5 mm (3/8")
25.0 mm (1")	4.75 mm (#4)
19.0 mm (3/4")	4.75 mm (#4)
12.5 mm (1/2")	2.36 mm (#8)
9.5 mm (3/8")	2.36 mm (#8)
4.75 mm (#4)	1.18 mm (#16)

Shape

- Round, Cubical, or Flat and Elongated
- SIGNIFICANTLY influences agg packing (VMA)!
- Directly impacts particle **STRENGTH**

Strength

- Related to G_{sb} from a given aggregate source
- SIGNIFICANTLY influenced by particle SHAPE

Importance of Aggregate G_{sb}

Accurate VMA

- Virgin Agg's:
 - IDOT provides moving average
 - Process to eliminate flyers
- RAP:
 - Fixed values(north vs. south)unless slag isinvolved

$$VMA = 100 - \left\{ \frac{(Gmb * Ps)}{Gsb} \right\}$$

Water Abs ——— AC Abs

- AC absorption (P_{ba}) is typically 65% of water absorption
- Range of 50-80%
- Porosity plays a role too!
- Directly affects total AC content
- Compare water absorption of your products to those of your competitors

Water and AC Absorption Calcs

- CA #1 35% (H₂O abs = 1.2%)
- CA #2 30% (H₂O abs = 1.6%)
- FA #1 25% (H₂O abs = 2.1%)
- FA #2 10% (H₂O abs = 0.9%)
- Combined H_2O abs = $(0.35 \times 1.2) + (0.30 \times 1.6) + (0.25 \times 2.1) + (0.10 \times 0.9) = 1.52\%$
- Asphalt abs $(P_{ba}) = 0.65 \times 1.52\% = 0.98\%$

Can Two Designs at the <u>SAME VMA</u> & Voids Require <u>Different</u> AC Contents?

• Design 1

- VMA = 13.4%
- Voids = 4.0%
- Total AC = 4.6%

Design 2

- VMA = 13.4%
- Voids = 4.0%
- Total AC = 4.8%
- The Difference Is Asphalt Absorption
- Design AC chosen @ 4.0% voids, so a difference in AC content between two designs is a function of:
 - VMA and/or
 - Asphalt Absorption

Consistency

- VMA is a function of:
 - Gradation, Shape, Texture and Strength
- What personnel and equipment **influence** these characteristics in your aggregate products?
- Everyone plays a role in Quality Control!

Quality Control

- Representative samples are crucial!
- But...QC isn't just <u>sample</u> testing!
- Inspection, Analysis and Action:
 - Action occurs before sampling or before testing
 - We react too often we must be proactive
 - Don't assume the owner's minimal requirements will suffice
- QC personnel seldom have time to test and oversee the process
- QC Managers play a vital role

Issues that Impact the Product

- Management
- Plant superintendents
- Ledge shots / Pit areas
- Primary, secondary and tertiary crushing operations
 - Equipment used
 - Operation rate
 - Equipment maintenance
- Log washer / Classifier operations

Issues that Impact the Product

- Stockpiling operations
 - Radial stacker, loader or trucks?
 - Multiple layers?
 - Location/direction?
 - Identification?
 - Intermingling issues?
- Load out operations
 - Trucks
 - Rail
 - Barge

Build them right
Prevent intermingling
Load out of them right

Issues at the HMA Plant

- Stockpiling and load out just as important!
- Multiple Cold Feeds for a single aggregate
 - Split if agg > 30%
 - Feed each CF from a different location in stockpile
- Mini Stockpile when multiple CF's aren't an option

Communication

- Ensure communication between your QC personnel and ours!
- Communicate any changes that impact gradation, shape, texture and strength, such as:
 - Personnel
 - Ledges or areas within a pit
 - Shot, mining or dredging methods
 - Crushing and/or classifying equipment
 - Production methods, especially screen decks
 - Stockpiling methods
 - Load out methods

Communication

- Changes will take place planned or not!
- Impact on our mix results depends on our ability to work together
- Is there time to determine how much the "change" is going to affect our mix?
- What we can do to minimize or negate the effect?

Help Us With Our Flaws...

- Encourage your QC personnel to visit our asphalt plant:
 - Are we stockpiling correctly?
 - Are our stockpiles clearly identified?
 - Are our stockpiles separated to prevent intermingling?
 - Are we loading out of them in a manner that helps reduce variability?
 - How do our test results compare to yours?
 - Are we having success on our projects where your product is being used?

Segregated Mix

Balanced Mix Design (BMD)

- One of the hottest HMA topics around the U.S.
- Two basic characteristics for HMA:
 - Strength (Rutting resistance)
 - Durability (Cracking/Stripping resistance)
- Lot's of tests being evaluated...

Performance Test Challenges...

- Does the test *clearly* relate to field performance?
- How *easy* is it to perform?
- How much *time* does it take?
- What does the equipment *cost*?
- Recommended specs, mix/specimen aging and parameters *relative to* our mixes/area?
 - Are the acceptance parameters the same for all mix types, sizes and uses?

Balanced Mix Design (BMD)

- Illinois has chosen:
 - Hamburg Wheel (Rutting)
 - I-FIT (Semi-Circular Bend) (Cracking)

What Impacts Performance Tests?

- There are things we:
 - know that we know...
 - know that we don't know...
 - don't know that we don't know...
- We (IDOT and Industry) are learning...
- It'll come down to:
 - Aggregate properties (recycle included)
 - Asphalt Cement properties (recycle included)
 - How we produce and place the product...

What Are Our Needs?

- Product consistency:
 - Gradation
 - Shape
 - Strength
 - Texture (micro-texture)
- Communication and partnership with you:
 - We understand things change and stuff happens...
 - We want to share results, thoughts and concerns

What Are Our Needs?

- ALL HMA aggregates are important to:
 - Achieve VMA
 - Produce consistent HMA
 - Meet Performance Test Requirements
- Angular products:
 - Are here to stay:
 - Stability
 - Durability (VMA)

